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ABSTRACT
A SOUTH POLAR VIEW OF LATE PALEOZOIC GLACIATION: PHYSICAL

SEDIMENTOLOGY AND PROVENANCE OF GLACIAL SUCCESSIONS IN THE
TASMANIAN AND TRANSANTARCTIC BASINS

by
Libby R.W. Ives

The University of Wisconsin — Milwaukee, 2021
Under the Supervision of Distinguished Professor Dr. John L. Isbell

The Late Paleozoic Ice Age (LPIA; ~ 374 — 256 Ma) is the longest Phanerozoic icehouse interval.
this interval in Earth’s history was largely defined by extensive glaciation of the southern hemisphere
at both polar and temperate latitudes. Glaciers are powerful climatic and geologic actors, especially
during icehouse periods, and widespread glaciation can have a significant influence on both regional
and global climate and geology. Therefore, constraining the characteristics of LPIA glaciers is
essential to developing a global-scale understanding of this key climatic event in Earth’s history. The
manuscripts in this dissertation examine the sedimentology, transport directions, stratigraphy, and
detrital zircon provenance of the Pennsylvanian — Permian glacigenic succession from the LPIA at

locations in the Transantarctic (Antarctica) and Tasmanian (Australia) basins.

The Transantarctic and Tasmanian basins share many characteristics that make them interesting and
important places to study LPIA glacigenic rocks. In both basins, sediments were deposited during a
~ 14 Myr icehouse interval spanning the Pennsylvanian-Permian boundary during which time
glaciation is thought to have been the most extensive of the LPIA. During this interval, both basins
were located at high (> 60°) southern latitudes along the Panthalassan margin of southeastern
Gondwana. The similarities in paleogeographic, geologic, and temporal contexts between the

Transantarctic and Tasmanian basins mean that characterizing and comparing LPIA glaciations in



both areas is critical to understanding the late Paleozoic glacial maximum at polar latitudes. The
works presented in this dissertation demonstrate that building an accurate, nuanced understanding

of global glaciations during the LPIA, requires beginning at the local scale and building outward.

Chapter 2 examines the Pagoda Formation of the Transantarctic Basin at four locations in the
Shackleton Glacier Region of Antarctica. The dominant lithology in the Pagoda Fm at those
locations is a massive, sandy, clast-poor diamictite. Depositional processes governing these
diamictites were proglacial, subaqueous glacial processes, likely a combination of mass transport,
iceberg rain-out, iceberg scouring, plume sedimentation, and subglacial till deposition. Some of the
deposits are part of grounding-line fan systems. All glacigenic sediments in the Pagoda Fm at these
locations were likely deposited during the retreat phase of a single, up to 90 m thick glacial sequence.
Flow directions from these successions support the hypothesis that an ice center was present toward

the Panthalassan margin of East Antarctica (Marie Byrd Land) during the LPIA.

Chapter 3 describes the basal 415 m of the type section of the Wynyard Formation of the
Tasmanian Basin, which outcrops along the coast of northwestern Tasmania. Facies associations in
this succession include muddy massive diamictite, sandy massive diamictite, and rhythmically
laminated fine-grained facies. Respectively, these sediments were deposited as a grounding-zone
wedge, proglacial, proximal grounding line fan or morainal bank, and proglacial, glacier-distal
cyclopelites. In this succession, the basal Wynyard Fm was deposited in glacier-proximal to glacier-
distal, marine environments on a continental shelf at water depths below storm wave base. All facies
associations contain mass transport and turbidite deposits that could have been driven by slope
instability due to rapid deposition. The “Wynyard Glacier” was most likely an outlet glacier or ice

stream draining a large ice cap or ice sheet.
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Chapter 4 is a detrital zircon geochronology provenance study of sandstones from the Wynyard
Formation. These data represent the first such measurements from the Wynyard Formation
anywhere in the basin. With these data, and using a “local first” approach, we demonstrated that all
measured detrital zircon dates from the Wynyard Fm can be attributed to zircon sources that occur
within 33 km of the sample location along the glacier’s flow path. Therefore, while the detrital
zircon provenance signature of the Wynyard Fm also supports the hypothesis that the Wynyard
Glacier flowed from south to north, this information does not impart insight into where the ice

center was nucleated.
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CHAPTER 1: INTRODUCTION

1.1. Motivation and Context

The Late Paleozoic Ice Age (LPIA; ~ 374 — 256 Ma) is the longest Phanerozoic icehouse interval. It
is the only icehouse that included complex, land-based life prior to the Cenozoic. The LPIA was
therefore likely the icehouse most similar to in terms of global bio-geo-chemical systems. Extensive
glaciation of the southern hemisphere at both polar and temperate latitudes were hallmarks of this
interval, as were low pCO?, high pO? generally low eustatic levels with large magnitude fluctuations,
low solar luminosity, and increased 6"*O and §°°C values relative to the rest of the Phanerozoic
(Gastaldo et al., 1996; Raymond and Metz, 2004; Montafiez and Soreghan, 2000; Fielding et al.,
2008b; Montafiez and Poulsen, 2013; Frank et al., 2015). The existence and characteristics of glaciers
of any age are controlled by global, regional, and local climatic and geologic conditions (Isbell et al.,
2012, 2021; Pauls et al., 2021). Therefore, constraining the characteristics of LPIA glaciers is
essential to developing a global-scale understanding of this key climatic event in Earth’s history, its
impacts on the evolution of life, and the extent it can be used to predict future climate change. The
characteristics of glaciers that can potentially be constrained by their geologic records are largely
physical characteristics (e.g., size and thermal regime), distribution, and age/timing. The geochemical
(e.g., Chemical Index of Alteration; Nesbitt and Young, 1982) and biologic records of glacigenic
sediments can also be used to understand local climate and environmental conditions at the time of

deposition.

Glaciers are powerful climatic and geologic actors, especially during icehouse periods. They are both
controlled by and exert influence over the distribution of regional and global temperatures,
precipitation, and oceanic and atmospheric circulation patterns (Saltzmam, 2003). These effects can

go far beyond the ability of glaciers to reshape landscapes (both terrestrial and sub-aqueous) through



extensive erosion and deposition. During icehouse periods changes in glacier volume compel
significant and relatively rapid changes in eustatic sea level (Isbell et al., 2003, 2021; Heckel, 2008;
Rygel et al., 2008; Eros et al., 2012). Additionally, the mass of glaciers isostatically depresses the
Earth’s crust, which can have dramatic near-field effects on sedimentation as well as drive far-field
changes in isostacy/apparent eustacy (Mitrovica et al., 2009; Whitehouse, 2018). Because wide-
spread glaciation can have a significant influence on both regional and global climate and geology,
constraining glacier behavior during the LPIA is critical to understanding the geologic and climatic

records from that period.

Despite glaciers’ ties to the global climate system, reconstructing and relating the physical
characteristics of glaciers (physical characteristics and distribution) to global climate trends (timing)
through their sedimentary records is not a straightforward task. This is largely due to the unique

nature of glacial depositional systems.

1. The combination of depositional processes of glacigenic systems are unique, but the
resulting lithologies are not (Isbell et al., 2021). This means that any certainty about the

glacigenic origin of a facies or succession is difficult to ascertain.

2. How glacial sediments accumulate and are eroded through time (the stratigraphy) is unlike
any other sedimentary system in that the glacier’s shifting grounding line and physical
characteristics (basal temperature), and not a shoreline, acts as the fulcrum between areas of

erosion and sedimentation (Powell and Cooper, 2002).

3. The sedimentary records of glaciers are also strongly biased towards glaciers with certain
physical properties and depositional regimes (Eyles et al., 1985; Kurjanski et al., 2020).
Specifically, glaciers with temperate (warm-based) thermal regimes are much more likely to

be preserved in the sedimentary record because they are more effective at subglacially
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eroding the records of prior glaciations and because they are more effective at depositing

large volumes of pro-glacial sediment than glaciers with “cooler” thermal regimes.

4. The ages of glacial strata are often difficult to constrain. Many glacigenic depositional
environments, especially glacier-proximal environments, are fossil poor. In both sedimentary
basins studied in this dissertation, there was no known volcanic activity providing detritus to
the basins concurrent to glaciation so radiometric ages are currently not an option for

determining age.

The works in this dissertation examine the sedimentology, transport directions, stratigraphy, and
detrital zircon provenance of glacigenic successions from the LPIA at locations in the Transantarctic
and Tasmanian basins. While the diamictites and other glacigenic strata are often enigmatic, useful
characterizations of these units can be made through lithofacies descriptions, thoughtful provenance

analyses, and robust, processes-informed interpretations of this data.

1.2.  Geologic Setting

The glacigenic strata in both basins were likely deposited sometime during at 14 Myr interval
spanning the late Carboniferous — early Permian, which is when glaciation during the LPIA is
thought to have been most extensive (Isbell et al., 2003, 2012; Fielding et al., 2008; Montafiez and
Poulsen, 2013). Not only were these southeastern Gondwanan basins glaciated at similar times, both
basins were located at high (> 60°) southern latitudes. Records of glaciations in polar and sub-polar
regions are especially important for constraining climatic trends during the LPIA. High-latitude
regions will have the longest-lived glacial episodes during icehouse events but remain sensitive to
climatic changes. For example, as Earth transitions from Cenozoic icechouse conditions to a period

of increased average global temperatures and pCO?, temperatures at high latitudes have increased
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Figure 1-1. Paleogeographic reconstructions of Gondwana near the Pennsylvanian-Permian Boundary. Stars
indicates the approximate location of the study areas in the Tasmanian and Transantarctic basin study locations.
Continent distributions are based on Lawver et al. (2011) and are copied from (Isbell et al. 2012). The south pole
position is from Meredith et al. (2021). Yellow regions indicate the modern extent of sedimentary basins containing late
Paleozoic Ice Age strata. Abbreviations include: Falkland Islands/Malvinas (FT), Ellsworth Mountain block (EM),
Antarctic Peninsula (AP), Thurston Island (TT), Marie Byrd Land (MBL), and the Challenger Plateau/western New
Zealand (ChP). Dashed line indicates 60°S. Basins adapted from Isbell et al. (2012).

more rapidly than at mid or low latitudes, driving global changes to atmospheric and ocean
circulation (Steig et al., 2009; Francis and Vavrus, 2015; Turner et al., 2016; Choi and Kim, 2018).
Unlike at mid-latitudes, glaciers at high latitudes do not reflect climate primarily by their presence or
absence, but rather (to a greater degree) by their thermal regime and extent (Pollard and DeConto,

2009; Landvik et al, 2014).



The Transantarctic and Tasmanian basins share many characteristics that make them interesting and
important places to study LPIA glacigenic rocks. As previously mentioned, glacial strata in these

basins are from the Permo-Carboniferous and were located at polar latitudes during that time (

Figure 1-1). Additionally, both basins were located along the Panthalassan margin of southeastern
Gondwana. This margin has a long history of subduction and orogenies, beginning in at least the
early Cambrian and continuing to the Mesozoic break up of Gondwana (Veevers and Powell, 1994;
Elliot, 2013). The similarities in paleogeographic, geologic, and temporal contexts between the
Transantarctic and Tasmanian basins mean that characterizing and comparing LPIA glaciations in

both areas may offer insight into the late Paleozoic glacial maximum at polar latitudes.

Since the Transantarctic Basin and Tasmanian Basin are both situated along the Panthalassan margin
of Gondwana, they have experienced similar tectonic histories. These parallel geologic events have
resulted in similar basin structure and stratigraphy. The shared geologic history of these basins likely
began in the Neoproterozoic, but clear geologic connections between eastern Australia and the
Transantarctic Mountains start in the early Paleozoic when they were subjected to the early
Cambrian Ross-Delamerian Orogeny. This orogeny was the product of continental arc tectonism
and resulted in the emplacement of extensive intrusions, significant syn-orogenic sediment
accumulation, and related deformation and metamorphism (Bodger and Miller, 2004; Foden et al.,
2000). Post-orogenic sedimentation persisted in both basins at least into the Devonian, and possibly
the early Carboniferous. During the Devonian, sedimentation in both areas consisted of dominantly
non-marine and shallow marine siliciclastic successions; the Wurawina Supergroup in Tasmania
(Banks and Williams, 1986) and the Taylor Group in the Transantarctic Mountains (Barrett et al.,
1986; Barrett, 1991). The deposition of these units ceased around the time the Panthalassan margin

of Gondwana was subjected to another orogenic event: the late Devonian — early Carboniferous



Lachlan Orogen in Australia (Gray and Foster, 2004) and its corollary orogenies in Antarctica, as
evidenced by granitoid magmatism and metamorphism of the same age in Marie Byrd Land (Elliot,

2013; Jordan et al., 2020

Figure 1-1). This orogeny was similar to the Ross-Delamerian Orogeny in that the event resulted in
the emplacement of extensive intrusions, significant syn-orogenic sediment accumulation, and
related deformation and metamorphism. However, in this case the area that was to become the
Transantarctic Basin in the Central Transantarctic Mountains (Chapter 2; Ives and Isbell, 2021) was
located significantly inboard of an orogenic front, and does not contain any syn-orogenic strata,
related intrusions, or deformation (Elliot, 2013). This period is represented in Transantarctic Basin
stratigraphy as an erosional disconformity of Permian sediments with the Devonian Taylor Group
ot an unconformity with pre-Devonian rocks (Collinson et al., 1994; Isbell, 1999). The Lachlan
Orogeny volcanic arc passed through Tasmania, and is represented there by widespread granitic
intrusions (Black et al., 2010). The youngest of these granites have ages of 350 Ma (Hong et al.,
2017). These intrusions were exposed at the surface prior to the initiation of Permo-Carboniferous
glacial sedimentation in the Tasmanian Basin around 300 Ma. The dramatic uplift that resulted in the

exposure of these rocks may have been a regional phenomenon (Rolland et al., 2019).

The similarities between the two basins continued once sedimentation began. Permo-Carboniferous
glacigenic sediments make up the basal strata of both the Transantarctic (Pagoda Formation and
equivalent units) and Tasmanian (Wynyard Formation and equivalent units) basins. In both basins
these strata were deposited on top of erosional surfaces with significant topographic relief on the
otder of hundreds of meters (Hand, 1993; Isbell, 1999). The undetlying crystalline basement and
Devonian strata sometimes show evidence for glacial erosion and/or deformation (Hand, 1993;

Isbell et al., 2008a; Chapter 2). The ages of glacigenic strata in both basins are constrained primarily



through palynomorph biostratigraphy. Interestingly, the palynomorph zones that constrain the ages
of both units are the same (¢f Kyle, 1997; Truswell, 1978), but the interpretations of their absolute
ages are slightly different due to geologic context and a limited invertebrate record (Figure 1-2). The
Pagoda Fm is interpreted to be from the early Permian (Asselian — Sakmarian; Masood et al., 1994;
Askin, 1998), and the Wynyard Fm is interpreted as late Carboniferous to early Permian (Gzhelian —
Asselian; Chapter 2). The Pagoda and Wynyard formations are both noteworthy for their thick
successions of dominantly massive diamictites. These diamictites led to relatively early

interpretations of these strata as glacigenic (¢ David, 1907; Grindley, 1963; Pinet et al., 1967).

Even though the diamictites of these two basins have long been considered glacigenic (and those
interpretations have withstood evolving paradigms of diamictite interpretation), extracting
information on the type, timing, and extent of late Paleozoic glaciers in these basins has been

challenging (e.g., Isbell et al., 2008a; Fielding et al., 2010). This is largely because unlike larger and
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Figure 1-2. Regional geologic context and tectonic setting of the Transantarctic and Tasmanian basin during
the early Permian A. Stratigraphy of the Beacon Supergroup of the Transantarctic Basin. Adapted from Elliot (2013);
Cornamusini (2017); Elliot et al. (2017), and Parmeener Supergroup in the Tasmanian Basin. Adapted from Fielding et
al.,, 2010 and Reid et al., 2014. Uppermost units are not named, and are absent in western Tasmanian Basin/Dundas
Trough (Reid et al., 2014). B. Tectonic setting of southern Gondwana during the Permian, adapted from Elliot (2013).
Regions of sedimentary deposition are shaded yellow. Note that there are differences in the positioning of some crustal
blocks (e.g., Patagonia and New Zealand) between this reconstruction and

Figure 1-1.

higher accommodation basins such as the Karoo (Isbell et al., 2008b) or Parana (Vesely and Assine,
2000), the Transantarctic and Tasmanian basins do not contain any “interglacial” or “deglaciation”
sediments preserved within glacigenic successions that can be used as correlative sequence

boundaries. Such deglaciation units often span large swaths of a basin, are typically composed of

stratified, fine-grained sediment, and are much more likely to contain fossils than glacigenic units.



Without interglacial deposits, the only temporal control available for the Pagoda Fm and Wynyard
Fm is the age of the overlying strata and the rare fossil record, sometimes recycled, that is present in
the glacial units. Such limited chronological constraints make temporally relating the deposits from
the same lithostratigraphic unit within these basins almost impossible. For example, it is difficult to
discern whether the striations that underlie the Pagoda Fm in one location from the same glacial
advance as the striae that underlie the Pagoda Fm 50 km away? In Chapter 3, we identify several
stratigraphic sequences within the Wynyard Fm. Despite their local importance, these sequences are
likely a local phenomenon and cannot be correlated to similar patterns anywhere else in the
Tasmanian Basin. Ultimately the Transantarctic and Tasmanian basins contain glacigenic strata from
a keystone time and place of the LPIA, but those records remain relatively inscrutable due to their

geologic setting.

1.3.  Research Question and Objectives

Research Question: To what extent can the physical characteristics, size, distribution, and timing
of LPIA glaciers in high-latitude Gondwanan basins be constrained, and how does this knowledge

inform our understanding of regional and global climate change during that time?

The manuscripts in this dissertation attempt to demonstrate that while the diamictites and other
glacigenic strata of the Pagoda Fm and Wynyard Fm are enigmatic, useful characterizations of these
units can be made through lithofacies descriptions, thoughtful provenance analyses, and robust,
processes-informed interpretations of this data. These works demonstrate that the best way to
address these challenges and build an accurate, nuanced understanding of global glaciations during
the LPIA is to begin at the local scale and build outward. In the lithofacies-based manuscripts
(Chapter 2 and Chapter 3), the aim is to build on our current understanding of the physical

characteristics of LPIA glaciations in the Transantarctic and Tasmanian basin. These works argue



that LPIA glacigenic deposits like the Pagoda and Wynyard formations must be understood in detail
on a local level before they can be tied to basinal, regional, or global patterns of climate change.
These works also demonstrate what kind of details about the physical characteristics and extent of
LPIA glaciers can be derived from sedimentological data (Objective 1). In the manuscript that
addresses detrital zircon provenance of the Wynyard Fm (Chapter 4), the overall aim is to improve
understanding of the scale of past ice sheets. Understanding of the LPIA has shifted from one of a
single, persistent, super-continent-sized ice sheet (e.g., Frakes, 1979), to one of multiple ice centers
(ice sheets or ice caps) that were distributed across Gondwana, and that grew and shrank
asynchronously (Fielding et al. 2008; Isbell et al. 2012; Montafiez and Poulsen 2013). 'Thus, locally-
focused studies have increased in importance. The work in Chapter 4 shows that provenance studies
of glacial sediments should also be approached by first comparing provenance indicators to local
sediment sources, and specifically tests whether the detrital zircon provenance of the Wynyard Fm

reflects local (< 100 km) detrital zircon along the Wynyard Glacier’s proposed flow path.

Objective 1: Characterize the types of glaciations in South Polar regions during the LPIA

Hypothesis 1.1: In the Shackleton Glacier Region of the Transantarctic Basin, LPIA glacigenic
strata were deposited in a “basin-marginal”, marine setting by a warm-based glacier (Isbell et al.,
2008a). This hypothesis is based on the lithofacies model for glacigenic deposition in the
Transantarctic Basin proposed by Isbell et al. (2008). This hypothesis proposes that basin-margin
successions are thin (< 100 m) and contain lithofacies that are likely to have evidence for subglacial

deposition and deformation.

Hypothesis 1.2: Glacigenic sediments in the Tasmanian Basin were deposited by multiple advances

of temperate glaciers (Hand, 1993; Henry et al., 20